# List

# list node 设计

list 是由 list 节点串联而成,需要分开设计。SGI STL 内设计的 list 为双向链表,故 list 节点需要三个成员变量。

# 核心实现

template <class T>
struct list_node{
	list_node* prev; 
	list_node* next;
	T data; 
};

# SGI STL 内源码实现:

struct _List_node_base {
  _List_node_base* _M_next;     // 后继
  _List_node_base* _M_prev;     // 前驱
};
/* 节点 */
template <class _Tp>
struct _List_node : public _List_node_base {
  _Tp _M_data;                 //  数据
};

# list 的迭代器

# list 的数据结构

template <class _Tp, class _Alloc>
class _List_base 
{
public:
  typedef _Alloc allocator_type;									// 空间配置器类型 allocator_type
  allocator_type get_allocator() const { return allocator_type(); }    
  _List_base(const allocator_type&) {								//  构造函数
    _M_node = _M_get_node();
    _M_node->_M_next = _M_node;
    _M_node->_M_prev = _M_node;
  }
  ~_List_base() {
    clear();
    _M_put_node(_M_node);
  }
  void clear();
protected:
  typedef simple_alloc<_List_node<_Tp>, _Alloc> _Alloc_type;
  _List_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
  void _M_put_node(_List_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } 
protected:
  _List_node<_Tp>* _M_node;
};
template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class list : protected _List_base<_Tp, _Alloc> {
  // requirements:
  __STL_CLASS_REQUIRES(_Tp, _Assignable);
  typedef _List_base<_Tp, _Alloc> _Base;
protected:
  typedef void* _Void_pointer;
public:      
  typedef _Tp value_type;                              //  数据类型 : value_type
  typedef value_type* pointer;                         //  指针 : pointer
  typedef const value_type* const_pointer;             //  常量指针 : const_pointer
  typedef value_type& reference;                       //  引用 : reference
  typedef const value_type& const_reference;           //  
  typedef _List_node<_Tp> _Node;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;
  typedef typename _Base::allocator_type allocator_type;
  allocator_type get_allocator() const { return _Base::get_allocator(); }
public:
  typedef _List_iterator<_Tp,_Tp&,_Tp*>             iterator;
  typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator>       reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
  typedef reverse_bidirectional_iterator<const_iterator,value_type,
                                         const_reference,difference_type>
          const_reverse_iterator;
  typedef reverse_bidirectional_iterator<iterator,value_type,reference,
                                         difference_type>
          reverse_iterator; 
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
#ifdef __STL_HAS_NAMESPACES
  using _Base::_M_node;
  using _Base::_M_put_node;
  using _Base::_M_get_node;
#endif /* __STL_HAS_NAMESPACES */
protected:
  _Node* _M_create_node(const _Tp& __x)
  {
    _Node* __p = _M_get_node();
    __STL_TRY {
      _Construct(&__p->_M_data, __x);
    }
    __STL_UNWIND(_M_put_node(__p));
    return __p;
  }
  _Node* _M_create_node()
  {
    _Node* __p = _M_get_node();
    __STL_TRY {
      _Construct(&__p->_M_data);
    }
    __STL_UNWIND(_M_put_node(__p));
    return __p;
  }
public:
  explicit list(const allocator_type& __a = allocator_type()) : _Base(__a) {}
  iterator begin()             { return (_Node*)(_M_node->_M_next); }
  const_iterator begin() const { return (_Node*)(_M_node->_M_next); }
  iterator end()             { return _M_node; }
  const_iterator end() const { return _M_node; }
  reverse_iterator rbegin() 
    { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const 
    { return const_reverse_iterator(end()); }
  reverse_iterator rend()
    { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const
    { return const_reverse_iterator(begin()); }
  /* 判空函数 empty */
  bool empty() const { return _M_node->_M_next == _M_node; }
  size_type size() const {
    size_type __result = 0;
    distance(begin(), end(), __result);
    return __result;
  }
  size_type max_size() const { return size_type(-1); }
  reference front() { return *begin(); }
  const_reference front() const { return *begin(); }
  reference back() { return *(--end()); }
  const_reference back() const { return *(--end()); }
  /* 交换 swap */
  void swap(list<_Tp, _Alloc>& __x) { __STD::swap(_M_node, __x._M_node); }
  /* 插入 insert */
  iterator insert(iterator __position, const _Tp& __x) {
    _Node* __tmp = _M_create_node(__x);
    __tmp->_M_next = __position._M_node;
    __tmp->_M_prev = __position._M_node->_M_prev;
    __position._M_node->_M_prev->_M_next = __tmp;
    __position._M_node->_M_prev = __tmp;
    return __tmp;
  }
  iterator insert(iterator __position) { return insert(__position, _Tp()); }
#ifdef __STL_MEMBER_TEMPLATES
  // Check whether it's an integral type.  If so, it's not an iterator.
  template<class _Integer>
  void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
                          __true_type) {
    _M_fill_insert(__pos, (size_type) __n, (_Tp) __x);
  }
  template <class _InputIterator>
  void _M_insert_dispatch(iterator __pos,
                          _InputIterator __first, _InputIterator __last,
                          __false_type);
  template <class _InputIterator>
  void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
    typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
    _M_insert_dispatch(__pos, __first, __last, _Integral());
  }
#else /* __STL_MEMBER_TEMPLATES */
  void insert(iterator __position, const _Tp* __first, const _Tp* __last);
  void insert(iterator __position,
              const_iterator __first, const_iterator __last);
#endif /* __STL_MEMBER_TEMPLATES */
  void insert(iterator __pos, size_type __n, const _Tp& __x)
    { _M_fill_insert(__pos, __n, __x); }
  void _M_fill_insert(iterator __pos, size_type __n, const _Tp& __x); 
  void push_front(const _Tp& __x) { insert(begin(), __x); }
  void push_front() {insert(begin());}
  void push_back(const _Tp& __x) { insert(end(), __x); }
  void push_back() {insert(end());}
  iterator erase(iterator __position) {
    _List_node_base* __next_node = __position._M_node->_M_next;
    _List_node_base* __prev_node = __position._M_node->_M_prev;
    _Node* __n = (_Node*) __position._M_node;
    __prev_node->_M_next = __next_node;
    __next_node->_M_prev = __prev_node;
    _Destroy(&__n->_M_data);
    _M_put_node(__n);
    return iterator((_Node*) __next_node);
  }
  iterator erase(iterator __first, iterator __last);
  void clear() { _Base::clear(); }
  void resize(size_type __new_size, const _Tp& __x);
  void resize(size_type __new_size) { this->resize(__new_size, _Tp()); }
  void pop_front() { erase(begin()); }
  void pop_back() { 
    iterator __tmp = end();
    erase(--__tmp);
  }
  list(size_type __n, const _Tp& __value,
       const allocator_type& __a = allocator_type())
    : _Base(__a)
    { insert(begin(), __n, __value); }
  explicit list(size_type __n)
    : _Base(allocator_type())
    { insert(begin(), __n, _Tp()); }
#ifdef __STL_MEMBER_TEMPLATES
  // We don't need any dispatching tricks here, because insert does all of
  // that anyway.  
  template <class _InputIterator>
  list(_InputIterator __first, _InputIterator __last,
       const allocator_type& __a = allocator_type())
    : _Base(__a)
    { insert(begin(), __first, __last); }
#else /* __STL_MEMBER_TEMPLATES */
  list(const _Tp* __first, const _Tp* __last,
       const allocator_type& __a = allocator_type())
    : _Base(__a)
    { this->insert(begin(), __first, __last); }
  list(const_iterator __first, const_iterator __last,
       const allocator_type& __a = allocator_type())
    : _Base(__a)
    { this->insert(begin(), __first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
  list(const list<_Tp, _Alloc>& __x) : _Base(__x.get_allocator())
    { insert(begin(), __x.begin(), __x.end()); }
  ~list() { }
  list<_Tp, _Alloc>& operator=(const list<_Tp, _Alloc>& __x);
public:
  // assign(), a generalized assignment member function.  Two
  // versions: one that takes a count, and one that takes a range.
  // The range version is a member template, so we dispatch on whether
  // or not the type is an integer.
  void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
  void _M_fill_assign(size_type __n, const _Tp& __val);
#ifdef __STL_MEMBER_TEMPLATES
  template <class _InputIterator>
  void assign(_InputIterator __first, _InputIterator __last) {
    typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
    _M_assign_dispatch(__first, __last, _Integral());
  }
  template <class _Integer>
  void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
    { _M_fill_assign((size_type) __n, (_Tp) __val); }
  template <class _InputIterator>
  void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
                          __false_type);
#endif /* __STL_MEMBER_TEMPLATES */
protected:
  void transfer(iterator __position, iterator __first, iterator __last) {
    if (__position != __last) {
      // Remove [first, last) from its old position.
      __last._M_node->_M_prev->_M_next     = __position._M_node;
      __first._M_node->_M_prev->_M_next    = __last._M_node;
      __position._M_node->_M_prev->_M_next = __first._M_node; 
      // Splice [first, last) into its new position.
      _List_node_base* __tmp      = __position._M_node->_M_prev;
      __position._M_node->_M_prev = __last._M_node->_M_prev;
      __last._M_node->_M_prev     = __first._M_node->_M_prev; 
      __first._M_node->_M_prev    = __tmp;
    }
  }
public:
  void splice(iterator __position, list& __x) {
    if (!__x.empty()) 
      this->transfer(__position, __x.begin(), __x.end());
  }
  void splice(iterator __position, list&, iterator __i) {
    iterator __j = __i;
    ++__j;
    if (__position == __i || __position == __j) return;
    this->transfer(__position, __i, __j);
  }
  void splice(iterator __position, list&, iterator __first, iterator __last) {
    if (__first != __last) 
      this->transfer(__position, __first, __last);
  }
  void remove(const _Tp& __value);
  void unique();
  void merge(list& __x);
  void reverse();
  void sort();
#ifdef __STL_MEMBER_TEMPLATES
  template <class _Predicate> void remove_if(_Predicate);
  template <class _BinaryPredicate> void unique(_BinaryPredicate);
  template <class _StrictWeakOrdering> void merge(list&, _StrictWeakOrdering);
  template <class _StrictWeakOrdering> void sort(_StrictWeakOrdering);
#endif /* __STL_MEMBER_TEMPLATES */
};
Edited on Views times

Give me a cup of [coffee]~( ̄▽ ̄)~*

Value WeChat Pay

WeChat Pay